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Localization and fluctuations in quantum kicked rotors
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We address the issue of fluctuations, about an exponential line shape, in a pair of one-dimensional kicked
quantum systems exhibiting dynamical localization. An exact renormalization scheme establishes the fractal
character of the fluctuations and provides a method to compute the localization length in terms of the fluctua-
tions. In the case of a linear rotor, the fluctuations are independent of the kicking parameterk and exhibit
self-similarity for certain values of the quasienergy. For givenk, the asymptotic localization length is a good
characteristic of the localized line shapes for all quasienergies. This is in stark contrast to the quadratic rotor,
where the fluctuations depend upon the strength of the kicking and exhibit local ‘‘resonances.’’ These reso-
nances result in strong deviations of the localization length from the asymptotic value. The consequences are
particularly pronounced when considering the time evolution of a packet made up of several quasienergy
states.@S1063-651X~99!09807-4#

PACS number~s!: 05.45.2a, 03.65.Sq, 75.30.Kz, 64.60.Ak
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Dynamical localization is an important manifestation
the quantum suppression of diffusive classical motion res
ing from nonintegrable dynamics@1–5#. As the name sug-
gests, the mechanism is analogous to the Anderson des
tion of a low-dimensional, low-temperature insulator pha
in terms of tight-binding models~TBM! @6,7#. The relation-
ship between these two seemingly disparate systems
made explicit@3# in a class of kicked quantum Hamiltonian
of the form ~in dimensionless units!

H5K~p!1V~u!( d~ t2n!, ~1!

whereK(p) denotes a general kinetic energy operator. N
that time is measured in units of spacing between kicks.
time-periodic nature of the Hamiltonian allows the tim
dependent solution to be expressed, in terms of the one-
evolution operatorU, as

Uc~u,t !5c~u,t11!. ~2!

For kicked systems,U takes on the particularly simple form

U5exp@2 iK ~p!/\#exp@2 iV~u!/\#, ~3!

where\ refers to the effective quantization scale in dime
sionless units. Further, the evolution of any initial conditi
can be expressed in terms of quasienergy statesfv which
satisfy

Ufv5e2 ivfv , ~4!
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where the quasienergyv is real asU is a unitary operator.
The relationship between these quantum kicked syst

and TBM becomes clear on projecting the quasienergy st
onto eigenstates ofK(p). In our context, these are angula
momentum states. The equation satisfied by the projec
coefficientsum onto themth angular momentum state is@3#

Tmum1(
r

Wm2rur50, ~5!

where

Tm5tan$@v2K~m!#/2%, ~6!

and theWm are the Fourier weights of

W~u!52tan@V~u!/2\#, ~7!

with respect to the angular momentum basis. This trans
mation provides a simple method to understand dynam
localization and recurrences in energy in kicked rotors.

In this mapping, the integer angular momentum quant
number of the rotor corresponds to the lattice site in TB
The free phase evolution between kicks provides the ps
dorandom diagonal~on-site! potential while the kicking po-
tential V(u) determines the range and strength of the h
ping. Thus, under certain conditions, boundedness
recurrences in energy in the kicked rotor manifest themse
in quasienergy states which are exponentially localized o
lattice labeled by the angular momentum quantum numbem
of the rotor.

From a practical standpoint, this method of studyi
kicked rotors is particularly useful when the TBM contai
only nearest-neighbor couplings. This has motivated m
453 ©1999 The American Physical Society
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studies@3,8# of a special class of kicked rotors where t
potential is chosen to beV(u)522\ arctan@k cos(u)#, result-
ing in a TBM,

Tmum1
k

2
~um111um21!50. ~8!

Note that we, unlike earlier treatments, explicitly retain t
presence of the quantization scale\ in the definition of the
potential. This makes it clear why the classical limits
quantum rotors corresponding to this choice of potential
trivial. The TBM, however, are perfectly well defined an
serve as useful illustrative examples.

This nearest-neighbor TBM has been studied@3# for linear
and quadratic rotors which are described byK(p)5sp,
where s is an irrational number, andK(p)5p2/2. In the
diagonal term in the TBM, these translate intoK(m)5sm
andK(m)5\m2/2, respectively. Thus,\ does not explicitly
appear in the TBM analysis of the linear rotor. In the qu
dratic rotor we set\58ps in keeping with the requirement
of dynamical localization@5#.

The linear rotor, where the diagonal disorder is quasip
odic, was solved exactly. In particular, the density of sta
was shown to be identical to the average density of states
the Lloyd model of disorder@8# for which theTm are inde-
pendent random variables with the Cauchy distribution

P~Tm!5
1

p

1

11Tm
2

. ~9!

Furthermore, the numerically computed localization len
was found to be in good agreement with the analytic,
semble averaged, inverse localization lengthḡ of the Lloyd
model @8#,

cosh~ ḡ !5Ak2211. ~10!

The localization lengthg21 depends uponk and controls the
transient and recurrence time scales in the system. For
quadratic rotor where the diagonal disorder is pseudo
dom, statistical studies of the sequencesTm showed similari-
ties with the random potential with Lorentzian distribution.
was argued that in spite of some correlations, the quadr
model also exhibits the localization characteristics of
Lloyd model@3,4#. However, our work here shows thatthese
residual correlations have a profound impact on the fluctu
tions in the line shape. These, in turn, can lead to stron
deviations ofg21 from the ideal Lloyd model prediction.

In this paper, we directly compute the fluctuations in t
exponential line shape for linear and quadratic rotors.
compare and contrast the linear, integrable, system w
equally spaced quasienergies,v j5 j s mod~1! ~independent
of k) and the quadratic, nonintegrable case, where
quasienergies depend uponk. We reiterate that the classica
limit of the Lloyd model is not well defined, and so integr
bility or not refers only to the distribution of the energ
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levels. In other words,the terminology merely distinguishe
between the two cases we consider and does not imp
classical limit.

Our motivation is to understand better how the two d
ferentK(p) in the kicked rotor are manifested in the loca
ization properties of the equivalent TBMs. We character
the differences in these two rotor systems by using a rec
technique@9# for studying the fluctuations in the respectiv
localized quasienergy states. We begin by factoring out
exponential envelope. Thus the projections of the eigenst
of the rotorum are written as

um5e2ḡumuhm , ~11!

wherehm are the fluctuations in the localized states at
mth lattice site. Thus, the fluctuationshm can be related to
the fluctuations in the localization lengthg ~where um
5e2g) as

g2ḡ52 lnuhmu/m. ~12!

As explained below, we use an exact decimation schem
compute the scaling properties of the fluctuationshm thereby
establishing the fact that these are fractal. Furthermore,
scale lengthg21 need not be presupposed but can be s
consistently determined. It should be noted that this equa
is valid for any TBM including random systems. Therefor
the method described above can be used to compute lo
ization length for any nearest-neighbor TBM irrespective
the nature of diagonal or off-diagonal disorder.

The fluctuationshm satisfy the following TBM:

e2ḡhm111eḡhm211lTmhm50, ~13!

where l52/k. We apply a recently developed decimatio
method@9# to this TBM.s in Tm was taken to be the invers
golden mean (A521)/2. In this approach, the incommens
rability of the lattice was exploited by decimating all site
except those labeled by the Fibonacci numbersFn . This
renormalization group approach was shown to be an
tremely useful tool to demonstrate self-similarity and to o
tain universal characteristics of quasiperiodic systems. H
we apply this formalism to a linear rotor, described by
quasiperiodic TBM, as well as to the quadratic rotor which
not quasiperiodic. We demonstrate that the Fibonacci de
mation scheme is a very efficient method to compute fl
tuations in the localization lengths irrespective of the nat
of the aperiodicity of the TBM. Note that for nonquasipe
odic problems, Fibonacci decimation can be replaced b
more conventional one where every other site is decima
Finally, we note that for quasiperiodic systems where
incommensurability is characterized by an arbitrary irratio
number, a decimation scheme based on a Farey tree has
developed@10#. The fractal characteristics of such system
do not exhibit the self-similarity that underlies incommens
rate systems with golden mean or other related quadr
irrationals. Apart from this difference, most of the resu
discussed below are valid for arbitrary irrationals.

After thenth decimation level, the nearest-neighbor TB
connecting the fluctuations at two neighboring Fibona
sites is written as
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f n~m!h~m1Fn11!5h~m1Fn!1en~m!h~m!. ~14!

This equation describes a flow in Fibonacci space~labeled by
the indexn) where the original TBM@Eq. ~13!# determines
the initial conditions for the functionsen and f n, which we
will refer to as the decimation functions. These functions c
be determined usingexactrecursion relations@9#

en11~ i !52
Aen~ i !

11A fn~ i !
, ~15!

f n11~ i !5
f n21~ i 1Fn! f n~ i 1Fn!

11A fn~ i !
, ~16!

A5en21~ i 1Fn!1 f n21~ i 1Fn!en~ i 1Fn!.

The derivation of these relations involves simple manipu
tions which exploit the additive property of the Fibonac
numbers@9,10#. These can now be iterated to machine p
cision as they do not depend on any parameter which co
limit the precision. It turns out that for the localized pha
whereg is always greater than zero, the decimation funct
f n vanishes asymptotically and hence the resulting renorm
ization flow simplifies to

en11~ i !52en21~ i 1Fn!en~ i !. ~17!

In view of this further simplification, the above equation c
be iterated up to 35 iterations, which corresponds to study
TBM of size up to 14 930 352.

Any fractal character in the fluctuations can be inferred
nontrivial asymptotic behavior of the functionsen . In par-
ticular, the convergence of the renormalization flow either
a nontrivial limit cycle ~which implies self-similarity! or a
strange set is a clear indication of fractality.

It is interesting to note that the decimation functionen

also determines the localization length asg2ḡ5 lnuenu/Fn.
When theḡ is not known, the above equation determines
self-consistently to a very high precision.

In order to calculate the exponential line shape for a giv
quasienergy, we iterate the TBM@Eq. ~8!#. Starting from the
site at1N, we iterate the equation backwards and simu
neously iterate forwards from site2N. We then match these
backward and forward iterates atm50 by adjusting the
phase factorv, thereby determining the quasienergy. No
that in this method, the localization center is always atm
50.

An extremely accurate method to determine the quas
ergies results from rewriting the TBM as a quasiperiodica
driven map@11#. This is obtained by defining

xm5um21 /um , ~18!

which transforms the TBM to

xm115
21

xm1l tan$@v2K~m!#/2%
. ~19!

The localized phase of the TBM manifests itself as a stra
nonchaotic attractor of this map, reflected in the express
for the Lyapunov exponent of the mapm522g @11#. The
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negative sign is crucial as it implies that an attractor w
m,0 corresponds to divergingum with increasingm. Simi-
larly, an attractor of the inverse map corresponds to dive
ing um with decreasingm. Thus, an exponentially localize
function is obtained by starting from the intersection poin
of these two attractors and reversing the direction of iterat
in each case. The quasienergies of the kicked rotor are u
as tunable phase factors to ensure thatthe intersection points
of the attractor always occurat m50. This provides an ex-
tremely accurate method to compute the quasienergies.
resulting um is exponentially localized in both direction
with the localization centerm0 always at zero. Note that a
consequence for the results we show is that the lattice
label isalways relative to the localization center.

As stated earlier, the primary difference between the
ear and quadratic rotors lies in the character of the fluct
tions. In both cases, the rotor wave functionum , with expo-
nentially decaying envelope, exhibits fractal fluctuationshm
which decay as a power law,hm'mp. The exponentp is
related to the decimation function asp(n)5 ln@uenu#/ln(Fn).
Asymptotically ~in the limit of large decimation level!,
e(n)'h(Fn), the exponentp is a measure of the fluctuation
in the exponentg as p(n)5(gn2ḡ)(Fn)/ ln(Fn). Note that
the measurep(n) depends on the decimation leveln. The
behavior ofp with kicking parameterk distinguishes the two
rotor cases we consider.

Figure 1 shows the self-similar fluctuationshm , for v
50, in the case of the linear rotor. It should be noted that
fluctuations are described by a nontrivial period-6 limit cyc
of the renormalization flow, that is,hFn

5hFn16
. Further, the

same period-6 was found for all values ofk thereby estab-
lishing the fact that the fractal fluctuations are independen
k for k.0. The multifractal nature of these fluctuations w
also confirmed by thef (a) curve. For other values o

FIG. 1. Self-similar fluctuations in a linear rotor forv50. The
fluctuations repeat themselves at every sixth Fibonacci site, tha
F(6), F(12), etc. This type of ‘‘translational invariance’’ in Fi
bonacci space is described by a period-6 limit cycle of the ren
malization flow. Note that this behavior is independent of the kic
ing parameterk. In this and all other figures, the units ar
dimensionless.
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FIG. 2. The variation in the power law exponentp(n) as a function of the kicking parameterk is shown for~a! the linear and~b!
quadratic rotors at two different decimation levels. The darker and lighter curves, respectively, correspond to the 12th and 15th d
level. ~c! shows the fluctuationshm versusm for the quadratic rotor atk53.252~darker curve! and atk52.9 ~lighter curve!. Note that the
larger value ofk corresponds to a peak~spike! in ~b! while the other does not. The jump in magnitude of the fluctuations is seen in
corresponding line shapes shown in~d!, with larger fluctuations leading to ‘‘shoulders’’ seen in the line shape. These ‘‘shoulders’’ res
variations in localization length from the corresponding asymptotic values.
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quasienergies, the fluctuations are not described by a l
cycle. Instead, the decimation functionsen ~for all quasien-
ergies! converge on an invariant set with fractal measu
independent ofk. For our purposes, it is more illustrative t
focus on the impact of these features on the localized
shape. Given the relationships constructed earlier, this
versality implies thatthe convergence of the localizatio

lengthgn
21 to the asymptotic valueḡ21 is also independen

of k.
As seen from Fig. 2~a!, the universality in the linear roto

is reflected inp(n), which is independent ofk at different
decimation levels. In contrast to the linear rotor, the q
dratic rotor shows fluctuations which depend strongly onk.
As seen from Fig. 2~b!, the powerp(n) exhibits many spikes
as a function of the parameterk. These spikes are the resu
of local ‘‘resonances’’ in the fluctuations. The nature of the
resonances is seen from Fig. 2~c! wherehm changes by sev
eral orders of magnitude within a few sites. The location
m and the magnitude of these ‘‘jumps’’ depend both onk and
the quasienergyv. Two values ofk are shown in Fig. 2~c!
with the dark curve (k53.252) corresponding to a large
spike ~for both n) in Fig. 2~b!. Figure 2~d! shows that the
resonances lead to ‘‘shoulders’’ in the exponential li
shape, indicating local variation in the exponential envelo
It is worth noting that the quasienergies vary withk and are
computed for eachk using the matching condition describe
earlier.

The location of the resonance determines the impac
these local deviations. If the resonance occurs close to
localization center, then the deviations ing from ḡ are
it
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clearly significant. However, if the resonance site is far fro
the localization center, then the exponential envelope dim
ishes the importance of the deviations. Figure 3 shows
line shapes associated with single quasienergy states for

FIG. 3. Single localized quasienergy states~points! for the qua-
dratic rotor ~a! and ~b! and the linear rotor~c!. The parameterk
52.8. Note that~a! and ~b! correspond to quasienergies 0.00 a
0.17, respectively. The linear rotor case is computed forv50. The

Lloyd model prediction for the localization lengthḡ21 is plotted in
each case~solid line! to guide the eye.
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FIG. 4. Localized line shapes~points! starting from a plane-wave initial condition for linear@~b! and ~d!# and quadratic@~a! and ~c!#
rotors. The first column consideredk52.8 while the second is fork55. In all cases, the solid line indicates the Lloyd model result.
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rotors. As seen from the linear rotor line shape in Fig. 3~c!,
the absence of resonancesmeans that the Lloyd model est
mate is a very good approximation to the actual calcula
localization length,all the way to the localization center.
This result was found to be true for all quasienergies and
all values of the kicking parameterk. However, for the qua-
dratic rotor shown in Figs. 3~a! and 3~b!, the Lloyd model
estimate ofg21 appears to be correct only in the tails of th
localized line shape for most of the quasienergies. Deviati
from the asymptoticḡ21 depend strongly on both the param
eter k and the quasienergy, as seen by contrasting Fig.~a!

and Fig. 3~b!. For v50.17,ḡ21 is clearly a better fit for the
associated quasienergy state than for the case ofv50.

Therefore, localization in the quadratic rotor starting fro
an initial wave packet composed of several quasiene
states should not be well described by the Lloyd model.
illustrate this, we consider the evolution of a plane wave~at
m50) under the repeated action of the single-step evolu
operatorU. The canonical method of fast Fourier transform
is used to get the localized line shape after a large numbe
kicks. The probability distributionf (m) across lattice sitesm
is then constructed. As seen from Fig. 4, the linear rotor@~b!
and ~d!# coincides with the Lloyd model prediction all th
way to the localization center. This is in stark contrast to
case of quadratic rotor in Figs. 4~a! and 4~c! where the de-
viations are strongest close to the localization center. I
also evident that the magnitude of these deviations depe
on k. Exponential fits near the centers of the line shapes y
values of g21 which are clearly different from the
asymptotic estimates given byḡ21.

The conditions under which the Lloyd model calculati
@8# was made allow us to speculate on the possible rea
for both the resonances and the associated deviation ig.
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The calculation of the estimateḡ required theTn to satisfy a
specific distribution. However, dynamical phase correlatio
would lead to a violation of this requirement. This was ve
fied both by constructing the return mapping for the on-s
potentials and by directly plotting a histogram of on-s
terms and contrasting with the required distribution. The
were noted in earlier work as well@3,4# and are clearly dif-
ferent in the linear and quadratic cases.

We believe that the local resonances and fluctuations s
in the localization characteristics of the quadratic rotor
generic to pseudorandom systems. We have verified
TBM with bounded on-site potentials such as cos(2psmn)
also exhibit characteristics similar to that of the quadra
rotor for n.2. n51 constitutes a special case as the mo
reduces to the well-known quasiperiodic Harper equat
@12#, where the fractal localization character was also fou
to be independent of the coupling@9#. It should be noted tha
the Harper equation has been recently solved using the B
ansatz@13#, implying some sort of ‘‘integrability’’ in the
model. In view of this, we speculate that for the linear rot
the k independence results from the integrable nature of
problem.

Ideally, in quadratic rotors, the possibility of correlation
can be recognized from studying the classical dynamics
sulting from the kicked rotor Hamiltonian. Specifically, i
the context of quantum dynamics in mixed phase spa
quantum phase correlations can be associated with the p
ence of invariant structures in the classical phase space.
relationship is of great current interest in the new context
quantum manifestations of classical anomalous trans
@14,15#. Recent work suggests that there may be a relati
ship between large fluctuations in the localization length a
the anomalous diffusion in the classical phase sp
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@14#. The line shapes also exhibit shoulders similar to
ones shown here. We propose to examine more closely
association of quantum phase correlations with structure
the associated classical phase space. However, as ment
earlier, this is not possible in the special class of rotor st
ied here as the corresponding classical mapping is not
defined. In keeping with this general motivation, we are pr
an
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cs
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ently extending our work to models where this is not
issue.
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