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We address the issue of fluctuations, about an exponential line shape, in a pair of one-dimensional kicked
guantum systems exhibiting dynamical localization. An exact renormalization scheme establishes the fractal
character of the fluctuations and provides a method to compute the localization length in terms of the fluctua-
tions. In the case of a linear rotor, the fluctuations are independent of the kicking par&naetgrexhibit
self-similarity for certain values of the quasienergy. For gikethe asymptotic localization length is a good
characteristic of the localized line shapes for all quasienergies. This is in stark contrast to the quadratic rotor,
where the fluctuations depend upon the strength of the kicking and exhibit local “resonances.” These reso-
nances result in strong deviations of the localization length from the asymptotic value. The consequences are
particularly pronounced when considering the time evolution of a packet made up of several quasienergy
states[S1063-651X%99)09807-4

PACS numbsgs): 05.45-a, 03.65.Sq, 75.30.Kz, 64.60.Ak

Dynamical localization is an important manifestation of where the quasienergy is real asU is a unitary operator.
the quantum suppression of diffusive classical motion result- The relationship between these quantum kicked systems
ing from nonintegrable dynamidd-5]. As the name sug- and TBM becomes clear on projecting the quasienergy states
gests, the mechanism is analogous to the Anderson descripnto eigenstates df(p). In our context, these are angular
tion of a low-dimensional, low-temperature insulator phasemomentum states. The equation satisfied by the projection
in terms of tight-binding modeléTBM) [6,7]. The relation-  coefficientsu,, onto themth angular momentum state [i8]
ship between these two seemingly disparate systems was
made explicif 3] in a class of kicked quantum Hamiltonians
of the form(in dimensionless unijs TmumJ“Z Wit =0, ®)

H=K(p)+ V()Y &(t—n), (1)  where

whereK(p) denotes a general kinetic energy operator. Note Tm=tan{lw=K(m)J/2}, ®)

that time is measured in units of spacing between kicks. Th
time-periodic nature of the Hamiltonian allows the time-
dependent solution to be expressed, in terms of the one-step
evolution operatotJ, as

&nd theW,, are the Fourier weights of
W(0)=—tarfV(6)/2h], @

_ with respect to the angular momentum basis. This transfor-
Ug(6.0=y(6,t+1). @ mation provides a simple method to understand dynamical
For kicked systemd,) takes on the particularly simple form l0ocalization and recurrences in energy in kicked rotors.
In this mapping, the integer angular momentum quantum
U=ex{ —iK(p)/hlexd —iV(6)/4], ®) number of the rotor corresponds to the lattice site in TBM.
The free phase evolution between kicks provides the pseu-
where? refers to the effective quantization scale in dimen-dorandom diagonalon-sitg potential while the kicking po-
sionless units. Further, the evolution of any initial conditiontential V(#) determines the range and strength of the hop-
can be expressed in terms of quasienergy statesvhich  ping. Thus, under certain conditions, boundedness and
satisfy recurrences in energy in the kicked rotor manifest themselves
' in quasienergy states which are exponentially localized on a
Up,=e '“¢,, 4 lattice labeled by the angular momentum quantum number
of the rotor.
From a practical standpoint, this method of studying
*Electronic address: isatija@sitar.gmu.edu kicked rotors is particularly useful when the TBM contains
TElectronic address: bas@math.csi.cuny.edu only nearest-neighbor couplings. This has motivated many
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studies[3,8] of a special class of kicked rotors where the levels. In other wordsthe terminology merely distinguishes
potential is chosen to Bé(#) = — 2% arctaijk cos@)], result-  between the two cases we consider and does not imply a
ing in a TBM, classical limit
Our motivation is to understand better how the two dif-
ferentK(p) in the kicked rotor are manifested in the local-
k ization properties of the equivalent TBMs. We characterize
T+ 5 (Um+1+ Um-1) =0 (8)  the differences in these two rotor systems by using a recent
technique[ 9] for studying the fluctuations in the respective
localized quasienergy states. We begin by factoring out the
exponential envelope. Thus the projections of the eigenstates

Note that we, unlike earlier treatments, explicitly retain theOf the rotoru,, are written as

presence of the quantization scéldn the definition of the
potential. This makes it clear why the classical limits of
guantum rotors corresponding to this choice of potential are
trivial. The TBM, however, are perfectly well defined and
serve as useful illustrative examples.

This nearest-neighbor TBM has been studigffor linear
and quadratic rotors which are described Kyp)=op,
where o is an irrational number, an&(p)=p?/2. In the
diagonal term in the TBM, these translate ikdm)=om
andK(m)=7#m?/2, respectively. Thug; does not explicitly
appear in the TBM analysis of the linear rotor. In the qua-

dratic rotor we sef =Baro in keeping with the requirements compute the scaling properties of the fluctuatiepsthereby

of dynamical localizatior}5]. e
The linear rotor, where the diagonal disorder is quasiperi-eStab“Shmg the fact that these are fractal. Furthermore, the

—1 _
odic, was solved exactly. In particular, the density of statesScale lengthy " need not be presupposed but can be self

was shown to be identical to the average density of states fg onsi_stently determin_ed. It .ShOUId be noted that this equation
the Lloyd model of disordef8] for which theT,, are inde- Is valid for any TBM including random systems. Therefore,

pendent random variables with the Cauchy distribution f[he .method described above can be used to_ ComP“t? local-
ization length for any nearest-neighbor TBM irrespective of
the nature of diagonal or off-diagonal disorder.
The fluctuationsy,,, satisfy the following TBM:

Up=e" 1y (11)

where 7, are the fluctuations in the localized states at the
mth lattice site. Thus, the fluctuationg, can be related to
the fluctuations in the localization lengtly (where uy,
=e 7) as

y—y=—In|pq|/m. (12)

As explained below, we use an exact decimation scheme to

1
P(Tw)=—

. 9
T1+T2 ©

e "1t € Y1+ AT 9 =0, (13

Furthermore, the numerically computed localization lengthVhere A =2/k. We apply a recently developed decimation

was found to be in good agreement with the analytic, enmethod[9] to this TBM. o in T, was taken to be the inverse

semble averaged, inverse localization Ien&tbf the Lloyd 90".’?” mean {/E—_l)/z_ In this "’?pproa‘?h’ th_e Incommensu-
model[8], rability of the lattice was exploited by decimating all sites

except those labeled by the Fibonacci numbEfs This
_ renormalization group approach was shown to be an ex-
cosh{y)= k™ *+1. (100 tremely useful to%l topderrr)l%nstrate self-similarity and to ob-
tain universal characteristics of quasiperiodic systems. Here,
The localization lengthy~* depends upok and controls the we apply this formalism to a linear rotor, described by a
transient and recurrence time scales in the system. For thguasiperiodic TBM, as well as to the quadratic rotor which is
guadratic rotor where the diagonal disorder is pseudoramot quasiperiodic. We demonstrate that the Fibonacci deci-
dom, statistical studies of the sequen@gsshowed similari- mation scheme is a very efficient method to compute fluc-
ties with the random potential with Lorentzian distribution. It tuations in the localization lengths irrespective of the nature
was argued that in spite of some correlations, the quadratiof the aperiodicity of the TBM. Note that for nonquasiperi-
model also exhibits the localization characteristics of theodic problems, Fibonacci decimation can be replaced by a
Lloyd model[3,4]. However, our work here shows thiiese  more conventional one where every other site is decimated.
residual correlations have a profound impact on the fluctua-Finally, we note that for quasiperiodic systems where the
tions in the line shapeThese, in turn, can lead to strong incommensurability is characterized by an arbitrary irrational
deviations ofy ! from the ideal Lloyd model prediction. number, a decimation scheme based on a Farey tree has been
In this paper, we directly compute the fluctuations in thedeveloped10]. The fractal characteristics of such systems
exponential line shape for linear and quadratic rotors. Wealo not exhibit the self-similarity that underlies incommensu-
compare and contrast the linear, integrable, system withate systems with golden mean or other related quadratic
equally spaced quasienergies,=jo mod1) (independent irrationals. Apart from this difference, most of the results
of k) and the quadratic, nonintegrable case, where theliscussed below are valid for arbitrary irrationals.
guasienergies depend upknWe reiterate that the classical  After thenth decimation level, the nearest-neighbor TBM
limit of the Lloyd model is not well defined, and so integra- connecting the fluctuations at two neighboring Fibonacci
bility or not refers only to the distribution of the energy sites is written as
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fa(m)yp(m+F,, ) =n(m+F,)+e,(mn(m). (14 4

This equation describes a flow in Fibonacci spdakeled by

the indexn) where the original TBMEg. (13)] determines

the initial conditions for the functions,, and f,,, which we 3
will refer to as the decimation functions. These functions can

be determined usingxactrecursion relation$9]

Aen(i)

A&l Eal

en+1(|) 1+Afn(|)1 (15) -

o fa g (I+HF)fR(i+Fp)

fﬂ+1(| - 1+Afn(|) ’ (16) 1
A=e,_(i+F)+f,_1(i+Fe,(i+Fy,).

The derivation of these relations involves simple manipula- of | | | |
tions which exploit the additive property of the Fibonacci _4000  —2000 o 2000 4000
numbers[9,10]. These can now be iterated to machine pre- m

C_iSi_O” as theY ‘_jo not depend on any parameter_which could gg 1. self-similar fluctuations in a linear rotor far=0. The

limit the precision. It turns out that for the localized phasef,cyations repeat themselves at every sixth Fibonacci site, that is,

wherey is always greater than zero, the decimation functiong(g) F(12), etc. This type of “translational invariance” in Fi-

f, vanishes asymptotically and hence the resulting renormakhonacci space is described by a period-6 limit cycle of the renor-

ization flow simplifies to malization flow. Note that this behavior is independent of the kick-
ing parameterk. In this and all other figures, the units are

. . . dimensionless.
en+1(|)=_enfl(H'Fn)en(')- (17)

In view of this further simplification, the above equation can
be iterated up to 35 iterations, which corresponds to studyinég1
TBM of size up to 14930 352.

Any fractal character in the fluctuations can be inferred b
nontrivial asymptotic behavior of the functiors. In par-
ticular, the convergence of the renormalization flow either t
a nontrivial limit cycle (which implies self-similarity or a

negative sign is crucial as it implies that an attractor with
<0 corresponds to diverging,, with increasingm. Simi-
rly, an attractor of the inverse map corresponds to diverg-
ing uy, with decreasingn. Thus, an exponentially localized
Munction is obtained by starting from the intersection points
of these two attractors and reversing the direction of iteration
%n each case. The guasienergies of the kicked rotor are used
. A . as tunable phase factors to ensure thatintersection points
stran_ge_set IS a clear indication of fractqllty._ . of the attractor always occuat m=0. This provides an ex-

It is interesting to note that the decimation functien  yemely accurate method to compute the quasienergies. The
also determines the localization length @s y=Inle;/F,.  resulting u,, is exponentially localized in both directions
When they is not known, the above equation determines itwith the localization centem, always at zero. Note that a

self-consistently to a very high precision. consequence for the results we show is that the lattice site
In order to calculate the exponential line shape for a giverlabel isalways relative to the localization center
guasienergy, we iterate the TBMNEg. (8)]. Starting from the As stated earlier, the primary difference between the lin-

site at+ N, we iterate the equation backwards and simulta-ear and quadratic rotors lies in the character of the fluctua-
neously iterate forwards from siteN. We then match these tions. In both cases, the rotor wave functiap, with expo-
backward and forward iterates at=0 by adjusting the nentially decaying envelope, exhibits fractal fluctuations
phase factorw, thereby determining the quasienergy. Notewhich decay as a power law,,~mP. The exponenp is
that in this method, the localization center is alwaysrat related to the decimation function ggn)=In[|e,}/In(F,).

=0. Asymptotically (in the limit of large decimation levigl

An extremely accurate method to determine the quasiere(n)~ 5(F,), the exponenp is a measure of the fluctuations

ergies results from _reyvriting'the TBM as a quasiperiodicallyin the exponenty as p(n)=(y,— v)(F,)/In(F,). Note that
driven map[11]. This is obtained by defining the measure(n) depends on the decimation level The
behavior ofp with kicking parametek distinguishes the two

Xm=Um-1/Um, (18) rotor cases we consider.
which transforms the TBM to Fi'gure 1 shows thg self-similar fluctuationg,,, for w
=0, in the case of the linear rotor. It should be noted that the
-1 fluctuations are described by a nontrivial period-6 limit cycle
Xm+1:xm+)\ tan[w—K(m)]/2}" (19 of the renormalization flow, that iSanz ME o Further, the

same period-6 was found for all values lothereby estab-
The localized phase of the TBM manifests itself as a strangéishing the fact that the fractal fluctuations are independent of
nonchaotic attractor of this map, reflected in the expressiok for k>0. The multifractal nature of these fluctuations was
for the Lyapunov exponent of the map=—2v [11]. The also confirmed by thef(a) curve. For other values of
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FIG. 2. The variation in the power law expongmin) as a function of the kicking parametkris shown for(a) the linear andb)
quadratic rotors at two different decimation levels. The darker and lighter curves, respectively, correspond to the 12th and 15th decimation
level. (c) shows the fluctuations,, versusm for the quadratic rotor gt=3.252(darker curve¢ and atk= 2.9 (lighter curve. Note that the
larger value ofk corresponds to a pedkpike in (b) while the other does not. The jump in magnitude of the fluctuations is seen in the
corresponding line shapes shown(d), with larger fluctuations leading to “shoulders” seen in the line shape. These “shoulders” result in
variations in localization length from the corresponding asymptotic values.

guasienergies, the fluctuations are not described by a limitlearly significant. However, if the resonance site is far from

cycle. Instead, the decimation functioag (for all quasien-

the localization center, then the exponential envelope dimin-

ergies converge on an invariant set with fractal measure,jshes the importance of the deviations. Figure 3 shows the
independent ok. For our purposes, it is more illustrative to line shapes associated with single quasienergy states for both

focus on the impact of these features on the localized line
shape. Given the relationships constructed earlier, this uni-
versality implies thatthe convergence of the localization

length y,jl to the asymptotic value ! is also independent
of k

As seen from Fig. @), the universality in the linear rotor
is reflected inp(n), which is independent ok at different
decimation levels. In contrast to the linear rotor, the qua-
dratic rotor shows fluctuations which depend stronglykon
As seen from Fig. @), the powermp(n) exhibits many spikes
as a function of the parametkr These spikes are the result
of local “resonances” in the fluctuations. The nature of these
resonances is seen from FigcPwhere 5, changes by sev-
eral orders of magnitude within a few sites. The location in
mand the magnitude of these “jumps” depend bothkand
the quasienergw. Two values ofk are shown in Fig. @)
with the dark curve K=3.252) corresponding to a larger
spike (for both n) in Fig. 2b). Figure Zd) shows that the
resonances lead to ‘“shoulders” in the exponential line
shape, indicating local variation in the exponential envelope.
It is worth noting that the quasienergies vary wittand are

earlier.

Infu,,|

-20

—-100

! ; . . FIG. 3. Single localized quasienergy statpsints for the qua-
computed for eack using the matching condition described yratic rotor (a) and (b) and the linear rotofc). The parametek

=2.8. Note that(a) and (b) correspond to quasienergies 0.00 and

The location of the resonance determines the impact 0f.17, respectively. The linear rotor case is computedsfer0. The
these local deviations. If the resonance occurs close to thgoyg model prediction for the localization lengt * is plotted in

localization center, then the deviations i from v are

each casésolid line) to guide the eye.
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FIG. 4. Localized line shapepointg starting from a plane-wave initial condition for linegb) and (d)] and quadrati¢(a) and (c)]
rotors. The first column consideréd=2.8 while the second is fdt=5. In all cases, the solid line indicates the Lloyd model result.

rotors. As seen from the linear rotor line shape in Fi@),3  The calculation of the estimatgrequired theT, to satisfy a

the absence of resonanceseans that the Lloyd model esti- gpecific distribution. However, dynamical phase correlations
mate is a very good approximation to the actual calculatedyoylq lead to a violation of this requirement. This was veri-
Ioc_allzatlon length,all the way to the Iocall_zatlon_ center fiad poth by constructing the return mapping for the on-site
This result was found to be true for all quasienergies and fobotentials and by directly plotting a histogram of on-site
all values of the kicking parametér However, for the qua- terms and contrasting with the required distribution. These

dra_tlc rotor sihlown in Figs. (&) and 3b), th? Lloyd T“Ode' were noted in earlier work as wdlB,4] and are clearly dif-
estimate ofy™ - appears to be correct only in the tails of the . . .
ferent in the linear and quadratic cases.

localized line shape for most of the quasienergies. Deviations . .

— 1 We believe that the local resonances and fluctuations seen
from the asymptoticy depend strongly on both t_he Param- i the localization characteristics of the quadratic rotor are
eterk and the quasienergy, as seen by contrasting R®. 3 goneric o pseudorandom systems. We have verified that
and Fig. 3b). For »=0.17,y"* is clearly a better fit for the TBM with bounded on-site potentials such as cest@r)
associated quasienergy state than for the case=o0. also exhibit characteristics similar to that of the quadratic

Therefore, localization in the quadl’a'[iC rotor Starting from rotor for v>2. v=1 constitutes a Specia' case as the model
an initial wave packet composed of several quasienergyeduces to the well-known quasiperiodic Harper equation
states should not be well described by the Lloyd model. Tq12), where the fractal localization character was also found
illustrate this, we consider the evolution of a plane wéat g be independent of the couplifig]. It should be noted that
m=0) under the repeated action of the single-step evolutioghe Harper equation has been recently solved using the Bethe
operatorJ. The canonical method of fast Fourier transformsansatz[13], implying some sort of “integrability” in the
is used to get the localized line shape after a large number @fodel. In view of this, we speculate that for the linear rotor,
kicks. The probability distributiofi(m) across lattice site®1  the k independence results from the integrable nature of the
is then constructed. As seen from Fig. 4, the linear rflor ~ problem.
and (d)] coincides with the Lloyd model prediction all the = |deally, in quadratic rotors, the possibility of correlations
way to the localization center. This is in stark contrast to thq:an be recognized from Studying the classical dynamics re-
case of quadratic rotor in Figs(a} and 4c) where the de-  sylting from the kicked rotor Hamiltonian. Specifically, in
viations are strongest close to the localization center. It ishe context of quantum dynamics in mixed phase spaces,
also evident that the magnitude of these deviations depenqﬁjantum phase correlations can be associated with the pres-
onk. Exponential fits near the centers of the line shapes yielénce of invariant structures in the classical phase space. This
values of y~* which are clearly different from the relationship is of great current interest in the new context of
asymptotic estimates given by *. guantum manifestations of classical anomalous transport

The conditions under which the Lloyd model calculation[14,15. Recent work suggests that there may be a relation-
[8] was made allow us to speculate on the possible reasorship between large fluctuations in the localization length and
for both the resonances and the associated deviatiop in the anomalous diffusion in the classical phase space
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[14]. The line shapes also exhibit shoulders similar to theently extending our work to models where this is not an
ones shown here. We propose to examine more closely thigsue.
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